#!/usr/bin/env python3 # Script for unsupervised image clustering using PCA and various clustering algorithms. # It merges metadata from two CSV files, computes image embeddings using a pre-trained # CNN backbone, reduces dimensionality with PCA, and applies clustering algorithms. # Author: Sofia Garcias Arcila import os import re import json import argparse import warnings from typing import List, Optional, Tuple import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering, MiniBatchKMeans from sklearn.metrics import ( silhouette_score, calinski_harabasz_score, davies_bouldin_score, ) from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestNeighbors import joblib import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from keras.applications import MobileNetV2, EfficientNetB0 from keras.applications.mobilenet_v2 import preprocess_input as mobilenet_preprocess from keras.applications.efficientnet import preprocess_input as efficientnet_preprocess from keras import backend as K os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" K.set_image_data_format("channels_last") # ----------------------------- # Utils # ----------------------------- def set_seed(seed: int = 42): np.random.seed(seed) tf.random.set_seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) def ensure_dir(path: str): os.makedirs(path, exist_ok=True) def guess_basename(s: Optional[str]) -> Optional[str]: if s is None or (isinstance(s, float) and np.isnan(s)) or str(s).strip() == "": return None name = os.path.basename(str(s)) base, _ = os.path.splitext(name) return base if base else None def first_existing_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]: for c in candidates: if c in df.columns: return c return None def _normalize_col_name(name: str) -> str: if not isinstance(name, str): return "" s = name.strip().lower() m = re.match(r"^(.*)_(a|b)$", s) # remove suffix _a/_b from merge if m: s = m.group(1) for ch in [" ", "_", "-", ".", "/"]: s = s.replace(ch, "") return s def find_matching_cols(df: pd.DataFrame, aliases: List[str]) -> List[str]: targets = {_normalize_col_name(a) for a in aliases} matches = [] for col in df.columns: if _normalize_col_name(col) in targets: matches.append(col) return matches def build_filename_from_row(row: pd.Series, img_ext: str = ".jpg") -> Optional[str]: for key in ["New_Name_With_Date", "New_Name", "Nombre_Nuevo"]: if key in row and pd.notna(row[key]) and str(row[key]).strip() != "": fname = str(row[key]).strip() if not os.path.splitext(fname)[1]: fname = fname + img_ext return fname for key in ["basename_final", "basename"]: if key in row and pd.notna(row[key]) and str(row[key]).strip() != "": return f"{row[key]}{img_ext}" if "Old_Name" in row and pd.notna(row["Old_Name"]) and str(row["Old_Name"]).strip() != "": fname = str(row["Old_Name"]).strip() if not os.path.splitext(fname)[1]: fname = fname + img_ext return fname return None # ----------------------------- # Load and merge CSVs # ----------------------------- def load_and_merge_csvs(csv_GBIF: str, csv_AV: str) -> pd.DataFrame: def read_csv_any(path: str) -> pd.DataFrame: for enc in ("utf-8", "utf-8-sig", "latin-1"): try: return pd.read_csv(path, encoding=enc) except UnicodeDecodeError: continue return pd.read_csv(path, encoding="utf-8", errors="replace") df_GBIF = read_csv_any(csv_GBIF) df_AV = read_csv_any(csv_AV) a_fname_col = first_existing_column( df_GBIF, ["New_Name_With_Date", "New_Name", "Nombre_Nuevo", "Old_Name", "Nombre_Anterior", "Filename"], ) if a_fname_col is None: str_cols = [c for c in df_GBIF.columns if df_GBIF[c].dtype == object] a_fname_col = str_cols[0] if str_cols else None df_GBIF = df_GBIF.copy() df_GBIF["basename_a"] = df_GBIF[a_fname_col].apply(guess_basename) if a_fname_col else None b_base_col = first_existing_column(df_AV, ["basename", "basename_final", "basename_json", "basename_csv"]) if b_base_col is None: b_fname_col = first_existing_column( df_AV, ["New_Name_With_Date", "New_Name", "Nombre_Nuevo", "Old_Name", "Nombre_Anterior", "Filename"], ) df_AV["basename_b"] = df_AV[b_fname_col].apply(guess_basename) if b_fname_col else None else: df_AV["basename_b"] = df_AV[b_base_col].apply(lambda x: str(x).strip() if pd.notna(x) else None) merged = pd.merge( df_GBIF, df_AV, left_on="basename_a", right_on="basename_b", how="outer", suffixes=("_a", "_b") ) merged["basename"] = merged["basename_a"].fillna(merged["basename_b"]) return merged def attach_filenames_and_paths(df: pd.DataFrame, images_dir: str, img_ext: str = ".jpg") -> pd.DataFrame: rows = [] for _, row in df.iterrows(): fname = build_filename_from_row(row, img_ext=img_ext) if fname is None: rows.append(None) continue full_path = os.path.join(images_dir, fname) rows.append((fname, full_path)) df = df.copy() df["filename_path_tuple"] = rows df["filename"] = df["filename_path_tuple"].apply(lambda t: t[0] if t else None) df["path"] = df["filename_path_tuple"].apply(lambda t: t[1] if t else None) df.drop(columns=["filename_path_tuple"], inplace=True) df["exists"] = df["path"].apply(lambda p: os.path.exists(p) if isinstance(p, str) else False) missing = (~df["exists"]).sum() if missing > 0: warnings.warn(f"{missing} archivos listados no existen en disco. Serán ignorados.") return df[df["exists"]].reset_index(drop=True) # ----------------------------- # Embeddings extraction # ----------------------------- def make_preprocess(backbone: str): return mobilenet_preprocess if backbone == "mobilenet" else efficientnet_preprocess def make_backbone_model(img_size: int, backbone: str = "mobilenet") -> tf.keras.Model: """ Create embedding extractor (RGB, channels_last). Uses keras.applications. If EfficientNet with ImageNet weights fails, fallback to random weights. """ tf.keras.backend.clear_session() K.set_image_data_format("channels_last") input_shape = (img_size, img_size, 3) if backbone == "efficientnet": try: base = EfficientNetB0(include_top=False, weights="imagenet", input_shape=input_shape, pooling="avg") except Exception as e: warnings.warn(f"No se pudo cargar EfficientNetB0 con pesos ImageNet ({e}). " f"Se usará EfficientNetB0 con pesos aleatorios (no preentrenado).") base = EfficientNetB0(include_top=False, weights=None, input_shape=input_shape, pooling="avg") else: base = MobileNetV2(include_top=False, weights="imagenet", input_shape=input_shape, pooling="avg") base.trainable = False return base def build_dataset(paths: List[str], img_size: int, preprocess_fn, batch_size: int = 64) -> tf.data.Dataset: ds = tf.data.Dataset.from_tensor_slices(paths) def _load_tf(p): img_bytes = tf.io.read_file(p) img = tf.image.decode_jpeg(img_bytes, channels=3) img = tf.image.resize(img, [img_size, img_size], method="bilinear", antialias=True) img = tf.cast(img, tf.float32) img = preprocess_fn(img) return img ds = ds.map(_load_tf, num_parallel_calls=tf.data.AUTOTUNE) ds = ds.batch(batch_size).prefetch(tf.data.AUTOTUNE) return ds def compute_embeddings(model: tf.keras.Model, ds: tf.data.Dataset) -> np.ndarray: return model.predict(ds, verbose=1) # ----------------------------- # Dimensionality reduction # ----------------------------- def fit_reduction(train_emb: np.ndarray, n_pca: int = 50): scaler = StandardScaler() train_scaled = scaler.fit_transform(train_emb) pca = PCA(n_components=min(n_pca, train_scaled.shape[1])) train_pca = pca.fit_transform(train_scaled) return scaler, pca, train_pca def transform_reduction(emb: np.ndarray, scaler: StandardScaler, pca: PCA) -> np.ndarray: return pca.transform(scaler.transform(emb)) # ----------------------------- # Clustering and metrics # ----------------------------- def _compute_centers_from_labels(X: np.ndarray, labels: np.ndarray) -> Optional[np.ndarray]: if labels is None or len(labels) == 0: return None centers = [] for c in sorted(set(labels)): if c == -1: continue centers.append(X[labels == c].mean(axis=0)) return np.array(centers) if centers else None def tune_dbscan(train_feats: np.ndarray, metric: str = "euclidean", min_samples_grid = (3, 5, 10), quantiles = (0.6, 0.7, 0.8, 0.9)) -> Tuple[Optional[DBSCAN], Optional[np.ndarray], Optional[np.ndarray]]: best = {"score": -np.inf, "model": None, "labels": None} for ms in min_samples_grid: k = max(2, min(ms, len(train_feats)-1)) nbrs = NearestNeighbors(n_neighbors=k, metric=metric).fit(train_feats) dists, _ = nbrs.kneighbors(train_feats) kth = np.sort(dists[:, -1]) for q in quantiles: eps = float(np.quantile(kth, q)) model = DBSCAN(eps=eps, min_samples=ms, metric=metric, n_jobs=-1) labels = model.fit_predict(train_feats) valid = labels[labels != -1] if len(np.unique(valid)) < 2: continue try: score = silhouette_score(train_feats[labels != -1], labels[labels != -1]) except Exception: score = -np.inf if score > best["score"]: best = {"score": score, "model": model, "labels": labels} if best["model"] is None: return None, None, None centers = _compute_centers_from_labels(train_feats, best["labels"]) return best["model"], best["labels"], centers def fit_cluster_algo(cluster: str, n_clusters: int, train_feats: np.ndarray, fast: bool = True, dbscan_eps: float = 0.8, dbscan_min_samples: int = 5, dbscan_metric: str = "euclidean", dbscan_auto: bool = False): if cluster == "kmeans": if fast: km = MiniBatchKMeans(n_clusters=n_clusters, batch_size=2048, n_init=10, random_state=42) else: km = KMeans(n_clusters=n_clusters, n_init=10, random_state=42) km.fit(train_feats) return km, km.labels_, km.cluster_centers_ if cluster == "dbscan": if dbscan_auto: model, labels, centers = tune_dbscan(train_feats, metric=dbscan_metric) if model is None: warnings.warn("DBSCAN(auto) no encontró ≥2 clusters. Fallback a KMeans.") km = MiniBatchKMeans(n_clusters=max(2, n_clusters), batch_size=2048, n_init=10, random_state=42) km.fit(train_feats) return km, km.labels_, km.cluster_centers_ print(f"DBSCAN(auto) seleccionado. metric={dbscan_metric}") return model, labels, centers else: db = DBSCAN(eps=dbscan_eps, min_samples=dbscan_min_samples, metric=dbscan_metric, n_jobs=-1) labels = db.fit_predict(train_feats) centers = _compute_centers_from_labels(train_feats, labels) uniq = set(labels) - {-1} if len(uniq) < 2: warnings.warn(f"DBSCAN devolvió {len(uniq)} cluster(s) válido(s). Ajusta eps/min_samples/metric o usa --dbscan_auto.") return db, labels, centers ag = AgglomerativeClustering(n_clusters=n_clusters) labels = ag.fit_predict(train_feats) centers = np.vstack([train_feats[labels == c].mean(axis=0) for c in range(n_clusters)]) return ag, labels, centers def assign_to_nearest_centroid(feats: np.ndarray, centers: Optional[np.ndarray]) -> np.ndarray: if centers is None or len(centers) == 0: return np.full((feats.shape[0],), -1, dtype=int) dists = ((feats[:, None, :] - centers[None, :, :]) ** 2).sum(axis=2) return np.argmin(dists, axis=1) def internal_metrics(X: np.ndarray, labels: np.ndarray) -> dict: mask = labels != -1 res = {} if mask.sum() > 1 and len(np.unique(labels[mask])) > 1: res["silhouette"] = float(silhouette_score(X[mask], labels[mask])) res["calinski_harabasz"] = float(calinski_harabasz_score(X[mask], labels[mask])) res["davies_bouldin"] = float(davies_bouldin_score(X[mask], labels[mask])) else: res["silhouette"] = None res["calinski_harabasz"] = None res["davies_bouldin"] = None return res # ----------------------------- # Plot # ----------------------------- def plot_scatter_2d(X2d: np.ndarray, labels: np.ndarray, title: str, out_path: str): plt.figure(figsize=(8, 6)) uniq = np.unique(labels) if len(uniq) <= 1: sns.scatterplot(x=X2d[:, 0], y=X2d[:, 1], s=12, linewidth=0, color="#1f77b4", legend=False) else: palette = sns.color_palette("tab20", n_colors=len(uniq)) sns.scatterplot(x=X2d[:, 0], y=X2d[:, 1], hue=labels, palette=palette, s=12, linewidth=0, legend=False) plt.title(title) plt.tight_layout() plt.savefig(out_path, dpi=180) plt.close() # ----------------------------- # Main # ----------------------------- def parse_args(): parser = argparse.ArgumentParser(description="Unsupervised image clustering (rápido)") parser.add_argument("--images_dir", default=r"C:\Users\sof12\Desktop\ML\Datasets\Nocciola_GBIF") parser.add_argument("--csv_GBIF", default=r"C:\Users\sof12\Desktop\ML\Datasets\Nocciola_GBIF\change_namesAV.csv") parser.add_argument("--csv_AV", default=r"C:\Users\sof12\Desktop\ML\Datasets\Nocciola_GBIF\metadatos_unidos.csv") parser.add_argument("--out_dir", default=r"C:\Users\sof12\Desktop\ML\Datasets\Nocciola_GBIF\TrainingV7") parser.add_argument("--img_ext", default=".jpg") parser.add_argument("--img_size", type=int, default=224) parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--sample", type=int, default=None) parser.add_argument("--backbone", choices=["mobilenet", "efficientnet"], default="efficientnet") parser.add_argument("--cluster", choices=["kmeans", "dbscan", "agglomerative"], default="kmeans") parser.add_argument("--n_clusters", type=int, default=5) parser.add_argument("--fast_kmeans", action="store_true", help="Usar MiniBatchKMeans para acelerar") # DBSCAN params parser.add_argument("--dbscan_eps", type=float, default=0.8, help="DBSCAN eps (si no se usa --dbscan_auto)") parser.add_argument("--dbscan_min_samples", type=int, default=5, help="DBSCAN min_samples") parser.add_argument("--dbscan_metric", choices=["euclidean", "cosine", "manhattan"], default="euclidean") parser.add_argument("--dbscan_auto", action="store_true", help="Buscar eps/min_samples automáticamente") return parser.parse_args() def main(): args = parse_args() set_seed(args.seed) ensure_dir(args.out_dir) # 1) Load and merge CSVs print("Loading and merging CSVs...") merged = load_and_merge_csvs(args.csv_GBIF, args.csv_AV) print("Resolving filenames and verifying files on disk...") merged = attach_filenames_and_paths(merged, args.images_dir, img_ext=args.img_ext) if len(merged) == 0: print("No images found. Check images_dir and CSVs.") return # Standardize 'fase V' and 'fase R' v_cols = find_matching_cols(merged, ["fase v", "fase_v", "fasev", "faseV", "Fase V"]) r_cols = find_matching_cols(merged, ["fase r", "fase_r", "faser", "faseR", "Fase R"]) if v_cols: ser_v = None for c in v_cols: ser_v = merged[c] if ser_v is None else ser_v.combine_first(merged[c]) merged["fase V"] = ser_v print(f"Using columns for 'fase V': {v_cols}") else: warnings.warn("No equivalent column found for 'fase V'.") if r_cols: ser_r = None for c in r_cols: ser_r = merged[c] if ser_r is None else ser_r.combine_first(merged[c]) merged["fase R"] = ser_r print(f"Using columns for 'fase R': {r_cols}") else: warnings.warn("No equivalent column found for 'fase R'.") # 2) Optional sampling if args.sample is not None and args.sample < len(merged): merged = merged.sample(n=args.sample, random_state=args.seed).reset_index(drop=True) # 3) Split print("Splitting train/val/test...") idx_all = np.arange(len(merged)) idx_train, idx_tmp = train_test_split(idx_all, test_size=0.30, random_state=args.seed, shuffle=True) idx_val, idx_test = train_test_split(idx_tmp, test_size=0.50, random_state=args.seed, shuffle=True) df_train = merged.iloc[idx_train].reset_index(drop=True) df_val = merged.iloc[idx_val].reset_index(drop=True) df_test = merged.iloc[idx_test].reset_index(drop=True) # 4) Embeddings in one pass print("Building embedding model...") preprocess_fn = make_preprocess(args.backbone) model = make_backbone_model(args.img_size, backbone=args.backbone) print("Computing embeddings (one pass for all images)...") ds_all = build_dataset(merged["path"].tolist(), args.img_size, preprocess_fn, args.batch_size) emb_all = compute_embeddings(model, ds_all) emb_train = emb_all[idx_train] emb_val = emb_all[idx_val] emb_test = emb_all[idx_test] # 5) PCA print("Fitting PCA reduction (50D for clustering, 2D for plots)...") scaler, pca50, train_50 = fit_reduction(emb_train, n_pca=50) val_50 = transform_reduction(emb_val, scaler, pca50) test_50 = transform_reduction(emb_test, scaler, pca50) pca2 = PCA(n_components=2).fit(scaler.transform(emb_train)) train_2d = pca2.transform(scaler.transform(emb_train)) val_2d = pca2.transform(scaler.transform(emb_val)) test_2d = pca2.transform(scaler.transform(emb_test)) # 6) Clustering print(f"Clustering with {args.cluster}...") cluster_model, y_train_clusters, centers = fit_cluster_algo( args.cluster, args.n_clusters, train_50, fast=args.fast_kmeans if args.cluster == "kmeans" else True, dbscan_eps=args.dbscan_eps, dbscan_min_samples=args.dbscan_min_samples, dbscan_metric=args.dbscan_metric, dbscan_auto=args.dbscan_auto, ) unique, counts = np.unique(y_train_clusters, return_counts=True) print(f"Cluster distribution (train): {dict(zip(map(int, unique), map(int, counts)))}") if args.cluster == "kmeans": y_val_clusters = cluster_model.predict(val_50) y_test_clusters = cluster_model.predict(test_50) else: y_val_clusters = assign_to_nearest_centroid(val_50, centers) y_test_clusters = assign_to_nearest_centroid(test_50, centers) # 7) Internal metrics print("Computing internal metrics...") train_internal = internal_metrics(train_50, y_train_clusters) val_internal = internal_metrics(val_50, y_val_clusters) test_internal = internal_metrics(test_50, y_test_clusters) # 8) Save outputs (only filename, fase V, fase R, cluster, split) print("Saving outputs...") ensure_dir(args.out_dir) def pick_min_columns(df_split: pd.DataFrame, clusters: np.ndarray, split_name: str) -> pd.DataFrame: cols_wanted = ["filename", "fase V", "fase R"] cols_exist = [c for c in cols_wanted if c in df_split.columns] missing = [c for c in cols_wanted if c not in df_split.columns] if missing: warnings.warn(f"Columnas faltantes en {split_name}: {missing}") out = df_split[cols_exist].copy() out["cluster"] = clusters out["split"] = split_name return out train_min = pick_min_columns(df_train, y_train_clusters, "train") val_min = pick_min_columns(df_val, y_val_clusters, "val") test_min = pick_min_columns(df_test, y_test_clusters, "test") assignments_all = pd.concat([train_min, val_min, test_min], ignore_index=True) assignments_all.to_csv(os.path.join(args.out_dir, "assignments.csv"), index=False, encoding="utf-8") train_min.to_csv(os.path.join(args.out_dir, "train_assignments.csv"), index=False, encoding="utf-8") val_min.to_csv(os.path.join(args.out_dir, "val_assignments.csv"), index=False, encoding="utf-8") test_min.to_csv(os.path.join(args.out_dir, "test_assignments.csv"), index=False, encoding="utf-8") # Save models joblib.dump(scaler, os.path.join(args.out_dir, "scaler.joblib")) joblib.dump(pca50, os.path.join(args.out_dir, "pca50.joblib")) joblib.dump(pca2, os.path.join(args.out_dir, "pca2.joblib")) joblib.dump(cluster_model, os.path.join(args.out_dir, f"{args.cluster}.joblib")) # Plots plot_scatter_2d(train_2d, y_train_clusters, f"Train clusters ({args.cluster})", os.path.join(args.out_dir, "train_clusters_2d.png")) plot_scatter_2d(val_2d, y_val_clusters, f"Val clusters ({args.cluster})", os.path.join(args.out_dir, "val_clusters_2d.png")) plot_scatter_2d(test_2d, y_test_clusters, f"Test clusters ({args.cluster})", os.path.join(args.out_dir, "test_clusters_2d.png")) summary = { "counts": {"train": len(df_train), "val": len(df_val), "test": len(df_test)}, "cluster": args.cluster, "n_clusters": args.n_clusters, "backbone": args.backbone, "img_size": args.img_size, "internal_metrics": {"train": train_internal, "val": val_internal, "test": test_internal}, "output_files": { "all": os.path.join(args.out_dir, "assignments.csv"), "train": os.path.join(args.out_dir, "train_assignments.csv"), "val": os.path.join(args.out_dir, "val_assignments.csv"), "test": os.path.join(args.out_dir, "test_assignments.csv"), }, } with open(os.path.join(args.out_dir, "summary.json"), "w", encoding="utf-8") as f: json.dump(summary, f, indent=2, ensure_ascii=False) print("Done. Results saved to:", args.out_dir) # Optional: save features for later reuse np.save(os.path.join(args.out_dir, "features.npy"), emb_all) np.save(os.path.join(args.out_dir, "feature_paths.npy"), merged["path"].to_numpy()) print(f"Features guardadas en {args.out_dir}\\features.npy y feature_paths.npy") if __name__ == "__main__": main()